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a b s t r a c t

The fractional Fourier transform (FrFT) is revisited in the framework of strongly continuous
periodic semigroups to restate known results and to explore new properties of the FrFT.
We then show how the FrFT can be used to reconstruct Magnetic Resonance (MR) images
acquired under the presence of quadratic field inhomogeneity. Particularly, we prove that
the order of the FrFT is a measure of the distortion in the reconstructed signal. Moreover,
we give a dynamic interpretation to the order as time evolution of a function. We also
introduce the notion of ρ–α space as an extension of the Fourier or k-space in MR, and
we use it to study the distortions introduced in two common MR acquisition strategies.
We formulate the reconstruction problem in the context of the FrFT and show how the
semigroup theory allows us to find new reconstruction formulas for discrete sampled
signals. Finally, the results are supplemented with numerical examples that show how it
performs in a standard 1D MR signal reconstruction.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The fractional Fourier transform (FrFT) is an extension of the Fourier transform first developed by Kober [1] in the late
thirties and rediscovered by Namias [2] in the late seventies. Namias used the FrFT in the context of quantum mechanics
as a way to solve certain problems involving quantum harmonic oscillators. He not only stated the standard definition for
the FrFT, but also developed an operational calculus for this new transform. The general idea is to consider the eigenvalue
decomposition of the Fourier transform in terms of the Hermite (or Gauss–Hermite [3, Chapter 2, Section 5.2]) functions.
Then, by continuously interpolating the eigenvalues from 1 to themselves, a family of operators that deform the identity
operator into the Fourier transform is obtained. In the particular case of the FrFT, this interpolation is performed by replacing
the nth eigenvalue by its ath power, for a between 0 and 1. This value is called the transform order. Since this interpolation
depends on a single parameter, the interpolating operators form a one-parameter family. Later Kerr [4] exploited this fact
to prove that this family is indeed a strongly continuous unitary group. However, the periodic nature of this family was
apparently overlooked.

Starting in the eighties and continuing until today, intensive research has been done on applications of the FrFT to
problems in applied sciences and physics. Particularly, in optics [5–8] the FrFT fits nicely in the context of Linear Canonical
Transforms [9], itself an extension of the Fourier transform that has been the subject of extensive research. This allows to
construct optical devices that physically produce the fractional Fourier transform of optical signals [10,11]. In turn, it is
possible to extend certain quantities to define their fractional counterparts, as is the case for the fractional correlation [12],
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[3, Chapter 11, Section 2]. A remarkable aspect of these applications is that the transform order has a natural physical
interpretation in terms of the distance between the lenses of the device.

In the past years, these developments have crossed the boundaries of optics into the field of signal processing, as the FrFT
has found several applications in that context [13], [3, Chapters 10, 11]. In these cases, the transform order is thought as a
fixed parameter that allows us to extract time–frequency information from the signal. However, the physical interpretation
depends heavily on the application being considered. As in optics, several concepts defined in the context of time–frequency
analysis have been extended to their fractional counterparts, such as fractional uncertainty relations [14–16], fractional
convolutions [17] and fractional bandlimited signals [18,19] among others. The notion of a discrete FrFT (DFrFT) is crucial in
digital signal processing. Concretely, in discrete signal processing there are a discrete and finite number of measurements of
a signal on a fractional domain. Using the DFrFT it is possible to find a good approximation of the original signal in the time
domain in the same way that an inverse DFT is performed on discrete frequency measurements. Unfortunately, to this day
there is no consensus as to which discrete transform is the DFrFT. There are two possible approaches to this transform. The
first consists in constructing a set of discrete eigenvectors to reproduce the approach outlined in the first paragraph. This
method is commonly known as the DFrFT [3, Chapter 6, Section 2]. The second approach consists in considering the signal as
fractional bandlimited, so that the integrals can be truncated and approximated by Riemann sums. These can be calculated
using the traditional FFT algorithm [3, Chapter 6, Section 3].

In this work, we show a new application for the FrFT to Magnetic Resonance Imaging (MRI). In MRI, the object or
a patient is placed in a strong, homogeneous and constant magnetic field, which interacts with the nuclear spin of the
elements composing it, causing the magnetization of the object. These nuclei are excited by means of an electromagnetic
radio-frequency (RF) pulse tuned to the resonance frequency of the element that one wants to image, typically hydrogen.
Then, as the excited spins decay to their minimal energy state, they emit electromagnetic radiation that is measured as
a voltage induced in acquisition coils. To resolve the spatial location of the nuclei, spatial gradients are used to make the
frequency and phase of the decay dependent on the position of the nucleus. The relation between themeasured signal, called
the Magnetic Resonance (MR) signal, and the magnetization of the object (which is proportional to the proton density) is
known as the signal equation and the problem of recovering the magnetization from this signal is usually understood as a
reconstruction problem. The remarkable theoretical property of this process is that the MR signal is the Fourier transform of
the magnetization of the underlying object.

In MRI, the signal intensity increases with the external field strength and, on the other hand, the reconstruction quality
strongly depends on the homogeneity of the external field. To achieve uniform and high fields simultaneously is a difficult
technical challenge. Part of the high cost of the main coil comes from this requirement. In general, the homogeneity of the
field is easier to achievewith lengthier coils, but this conflictswith the desire of having shorter bores, for patient accessibility
and comfort. Manufacturers must trade off an acceptable field inhomogeneity, typically in the order of one part per million,
and the bore usability. The final consequence is that there is a remaining inhomogeneity that includes linear, quadratic and
higher order terms.

As an example of the impact of magnetic field inhomogeneity, consider functional magnetic resonance imaging (fMRI),
which plays an important role in studying localized brain function, both in examining healthy cognitive function and in
clinical patient groups. Field homogeneities and the use of standard sampling strategies of the MR signal can produce
geometric distortions (e.g. when using Echo Planar Imaging) or blurring effects (e.g. when using spiral imaging), thus
affecting the predictions of the subject’s brain.

Many different methods to correct the distortions have been proposed [20,21]. In this work, we consider the case when
the magnetic field strength happens to be a quadratic function of the spatial coordinates. In this specific case, we show that
one can model the relationship between the measured signal and the object to be reconstructed by the FrFT.

The purpose of the present work is two-fold. First, we reformulate the FrFT in the framework of periodic strongly
continuous semigroups. This allows us to state several new identities involving the FrFT and to apply certain inversion
formulas. Second, we establish the connection between the reconstruction problem of MRI in presence of quadratic fields
with the FrFT. As an application of our work, we use the inversion formulas from the semigroup theory to propose a new
approach for the reconstruction problem in MRI. Since the FrFT is itself an extension of the Fourier transform, we show that
these methods can be used to solve the reconstruction problem even in absence of inhomogeneities.

This paper is structured as follows. In Section 2we reformulate the FrFT in the framework of periodic strongly continuous
semigroups. This allows us to explore new properties of the FrFT which are a consequence of this theory. In Section 3 we
showhow the FrFT fits in the framework ofMRI. Particularly,we prove that the order of the FrFT is ameasure of the distortion
introduced by quadratic field inhomogeneities in the MR signal. We also introduce the notion of ρ–α space and we use it to
study the distortions introduced in two common MRI acquisition strategies. In Section 4 we formulate the reconstruction
problem in the context of the FrFT. We also show how the semigroup theory allows us to find new reconstruction formulas
for discrete sampled signals. Finally, in Section 5 we show a numerical implementation of this method and show how it
performs in a standard 1D MR signal reconstruction.

2. A reformulation of the fractional Fourier transform

This section reformulates the fractional Fourier transform (FrFT)within the context of semigroup theory. In turn, formulas
of approximation arising in this theory will allow us to propose newmethods to reconstruct themagnetization of the object
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from the MR signal. To begin, consider L2(R), the Hilbert space which consists of all complex-valued, Lebesgue measurable
functions with domain R and such that:

‖f ‖2
:=

∫
∞

−∞

|f (u)|2du < ∞.

The FrFT on L2(R) was originally described by Kober [1] and was later rediscovered by Namias in the context of quantum
mechanics [2]. One equivalent definition is as follows (see [3, Definition F, p. 132]):

F a
= e−i π2 aH , (2.1)

where H is proportional to the Hamiltonian of the quantum mechanical harmonic oscillator. This is a heuristic definition,
because if (2.1) is expanded as a power series, delicate questions of convergence arise. In fact, this is a well studied matter
in the theory of strongly continuous semigroups [22]. In an interesting work, Kerr [4] proved that the FrFT constitutes a
strongly continuous unitary group of operators on L2(R). However, the structure of L2(R) as a Hilbert space was not used
to its full extent, since Kerr’s approach considers the FrFT as defined by an integral formula (cf. Corollary 2.5). On the other
hand, the striking fact that the underlying group is periodic seems to have been overlooked.

In this section, we formalize (2.1) by means of the theory of semigroups of linear operators, introducing the definition
of the FrFT from a new perspective. In this direction, we also note the interesting and recently published paper [23] which
develops a general theory of fractional transformations in the setting of equicontinuous groups of operators on spaces of
test-functions and generalized functions, and where the fractional Fourier transform is a special case.

To begin, recall that, for n ∈ N0, the Gauss–Hermite functions are defined as

ψn(u) =
21/4

√
2nn!

Hn(
√
2πu) e−πu2 ,

where

Hn(u) = (−1)n eu
2 dn

dun
e−u2 , (2.2)

is the nth Hermite polynomial. It is a well-known fact that the Gauss–Hermite functions form an orthonormal system in
L2(R). For n ∈ Z, we define the operators Pn : L2(R) → L2(R) as

(Pnf )(u) := ⟨f , ψn⟩ ψn(u).

Define now the unbounded linear operator H : D(H) ⊂ L2(R) → L2(R) by

H f (u) :=
i
2


1
4
f ′′(u)− π2u2f (u)+

π

2
f (u)


, (2.3)

with (maximal) domain given by

D(H) = {f ∈ L2(R) : f ′′
∈ L2(R) and Mu2 f ∈ L2(R)},

whereMu2 denotes themultiplication by u2 operator, i.e.,Mu2 f (u) := u2f (u).We begin our considerationswith the following
summary of some important properties of the sequence of operators {Pn}∞n=0 that will be used throughout this work.

Proposition 2.1. The following assertions are valid:

• {Pn}∞n=0 is a sequence of bounded and linear projections on L2(R), that is PnPm = 0 if m ≠ n and P2
n = Pn.

• For all n ∈ N0, ‖Pn‖ ≤ 1.
• For all n ∈ N0, PnH = HPn = −inπ2 Pn.
•
∑

∞

n=0 Pnf = f for all f ∈ L2(R).
• The domain of H is dense in L2(R).

We now turn our attention to dynamical systems (or semigroups) on infinite dimensional spaces. Let X be a complex
Banach space and let B(X) be the Banach algebra of all bounded linear operators on X endowed with the operator norm. A
family {T (t)}t∈R ⊂ B(X) is called a group on X if it satisfies Abel’s functional equation:

T (t + s) = T (t)T (s) for all t, s ∈ R,
T (0) = I,

and the orbitmaps t → T (t)f are continuous fromR into X for every f ∈ X . The infinitesimal generator of the group {T (t)}t∈R
is defined by

Af := lim
t→0

T (t)f − f
t

,

whenever f ∈ D(A). The following is the main result of this section.
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Theorem 2.2. For all f ∈ L2(R) the family {T (t)}t∈R given by

T (t)f =

∞−
n=0

e−in π2 tPnf ,

defines an strongly continuous group in L2(R). Moreover,

• T (t) is periodic with period 4.
• T (1) = F , where F denotes the Fourier transform.

We remark the simplicity of the argument used to prove strong continuity in the Appendix compared with [4, Theorem
2.2] (see also [24, Theorem 3.3]) and even the simpler way to derive Abel’s functional equation comparedwith [24, Theorem
4.1]. On the other hand, our argument of proof resembles the employed in the recently appeared paper [23, Theorem2.2], but
with the difference that we havemade extensive use of the properties of projection operators established in Proposition 2.1.

We introduce the FrFT by means of the following definition.

Definition 2.3. We define the fractional Fourier transform of order a ∈ R for a function f ∈ L2(R) as

F a(f )(ρ) := [T (a)f ](ρ), ρ ∈ R.

The group {T (a)}a∈R will also be called the Fourier group.

The following lemma is the key to rigorously show that {T (a)}a∈R is, in fact, the same as the usual definition of the FrFT of
order a given by means of an integral formula. The identity stated below can be found in the literature, e.g. in [3]. However,
for the sake of completeness, we include a direct proof in the Appendix.

Lemma 2.4. For all ρ, u ∈ R and all α ∈ R \ πZ we have
∞−
n=0

ψn(ρ) e−inαψn(u) =
√
1 − i cotα eiπ(ρ

2 cotα−2ρu cscα+u2 cotα).

We remark that to prove this lemma, we put a restriction to the values of α. This is because the first term provides a
definition of the fractional Fourier transform for arguments f ∈ L2(R) whereas the second term is valid for arguments
f ∈ L1(R). Hence, in between, the orthogonality of the Gauss–Hermite functions on L2(R) is lost.

FromLemma2.4 and Theorem2.2wededuce the following result,which shows thewell-knownand equivalent definition
of the FrFT in terms of a Riemann integral.

Corollary 2.5. Given α ∈ R \ πZ we denote a :=
2
π
α. We have for all ρ ∈ R,

[T (a)f ](ρ) =
√
1 − i cotα

∫
∞

−∞

f (u) eiπ(ρ
2 cotα−2ρu cscα+u2 cotα)du. (2.4)

In practice, the restriction on the values ofα has a number of consequences for the fractional Fourier transform as defined
in (2.4). For instance, the behavior of the fractional Fourier transform in the border casesα ∈ πZ is not obvious.Moreover,we
need to specify which branch of

√
1 − i cotα is being considered. These problemswere treated in [24], first by confining the

values of α to the interval (−π, π) and then by treating the values on the boundary separately. In contrast, our approach by
means of strongly continuous groups produces a definition for the fractional Fourier transform valid for any value of a ∈ R.

In the next theorem, we summarize some of our previous remarks and we derive new properties and identities using
the framework of strongly continuous groups. As is standard, we denote by σ(H) the spectrum and by σp(H) the point
spectrum of H .

Theorem 2.6. The following assertions are valid:

• The infinitesimal generator of the Fourier group is H .
• The Fourier group is unitary, that is T (t)∗ = T (−t).
• σ(H) = σp(H) ⊂ iπ2 Z.
• The following identity holds:

Pnf =
1
4

∫ 4

0
e−in π2 s

[T (s)f ]ds.

In other words, Pnf is the nth Fourier coefficient of the fractional Fourier transform T (t).
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• For all λ ∉ iπ2 Z, we have

(λI − H)−1f =
1

1 − e−4λ

∫ 4

0
e−λs

[T (s)f ]ds.

• For all f ∈ D(H), H f =
∑

∞

n=1 −inπ2 Pnf .

To finish this section, we take advantage of the variety of approximation formulas of the theory of strongly continuous
semigroups to obtain the following result. It will be the basis for the description of a new formula to reconstruct the
magnetization from the MR signal given in the next section. For a proof, see the Appendix.

Theorem 2.7. For all f ∈ L2(R) we have in the L2 norm:

T (t)f = lim
q→∞

e−tq
∞−

m=0

tmqm

m!
T

m
q


f .

3. The connection between the fractional Fourier transform and magnetic resonance imaging

As seen in the previous section, the fractional Fourier transform offers a framework that extends the classical Fourier
transform through the transform order a. However, it is not always clear how to assign a physical interpretation to this
variable. In optics, for example, there are natural interpretations of the order and the transform itself [6–8]. In this section,
we will show that in Magnetic Resonance Imaging (MRI), the order is related to the distortion introduced by quadratic field
inhomogeneities. This connection shows that the FrFT extends the framework ofMRI, from homogeneous fields to quadratic
ones. This is remarkable, since one of the technical difficulties of MRI is to produce magnetic fields that are simultaneously
high and homogeneous.

Aswe described in Section 1, the cornerstone ofMRI is that theMR signal s(t) is related to themagnetization of the object
through its Fourier transform. To clarify the exposition, we will ignore the exponential decays that affect the MR signal (T1
and T2 relaxations) andwewill consider that a Larmor frequency demodulation has been performed [25]. Consequently, the
equation of the MR signal generated by a 1D object in an uniform magnetic field B(u) = B0 is:

s(t) =

∫
∞

−∞

f (u) e−2π ik(t)udu (3.1)

where k(t) is a predetermined function that represents how the measurements are performed, i.e., the trajectory traversed
on the Fourier domain (for a discussion of some common choices for k(t), see below). Eq. (3.1) is called the signal equation. It
essentially tells us that the Fourier transform of f evaluated at k(t) equals s(t). Now consider a field inhomogeneity, i.e., let
B(u) = B0 + p(u) be a non-constant function of space. In this case, (3.1) becomes

s(t) =

∫
∞

−∞

f (u) e−2π i(k(t)u+p(u)t)du.

If this inhomogeneity p(u) corresponds to a second order polynomial p(u) = p2u2
+ p1u + p0, then the signal equation

becomes

s(t) =

∫
∞

−∞

f (u) e−2π i(k(t)u+(p2u2+p1u+p0)t)du

= e−2π ip0t
∫

∞

−∞

f (u) eiπ(−2p2tu2−2(k(t)+p1t)u)du. (3.2)

From Corollary 2.5, the fractional Fourier transform F a (0 < a < 2) of a function f (u) can be written as

F a(f )(ρ) = Cα(ρ)
∫

∞

−∞

f (u) eiπ(u
2 cotα−2ρu cscα)du, (3.3)

where:

Cα(ρ) ≡ eiπρ
2 cotα

√
1 − i cotα, α ≡ aπ/2. (3.4)

Consider the following change of variables:

α(t) ≡ cot−1(−2p2t), (3.5)

ρ(t) ≡
k(t)+ p1t
1 + 4p22t2

=
k(t)+ p1t
cscα(t)

. (3.6)

It is clear that bymeans of these relations,we can transform (3.2) into the FrFT of variable order of f .We deduce the following
result.
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A B

Fig. 1. Example of the trajectories described on the ρ–α space. (A) Shows a one dimensional constant gradient trajectory whereas (B) shows a one
dimensional 2DFT trajectory.

Theorem 3.1. For quadratic field inhomogeneities, the signal s(t) multiplied by a weight factor depending on t are the samples
of the fractional Fourier transform of variable order.

For a proof, see the Appendix. It is important to note that normally k(t) = 0 for t < 0, that is, the system is causal. Thus,
if we choose the branch of cot−1 such that α ∈ (0, π), then α(0) = π/2 (a = 1) and cscα(t) > 1. Consequently, for finite
values of t we are far from a = 0 or a = 2, which could eventually pose problems with the integral definition of the FrFT
in (3.3).

The definition of α and ρ in (3.5) and (3.6) provides a parametric trajectory (ρ(t), α(t)) in a space we call the ρ–α space.
Since α is an angle, this space is conveniently represented in polar coordinates. Assuming that p2 < 0 (see Section 3.1) and
by virtue of the previous discussion, the trajectory in the ρ–α space starts immediately after the excitation (t = 0) in the
frequency axis or Fourier axis (α = π/2 or a = 1) and as time passes it curves toward the object axis (α = a = 0).

In the following paragraphs we analyze some common trajectories k(t)when distorted by a quadratic field. Particularly,
we analyze this distortion using the ρ–α space trajectories described.

3.1. Constant gradient

One common trajectory assumes that k(t) = 0 for t < 0 and k(t) = G0t for t ≥ 0, for G0 constant. Physically, this
corresponds to a constant readout gradient as would be the case in a projection reconstruction sequence. For simplicity,
assume that the inhomogeneity is purely quadratic, i.e., p(u) = p2u2. Additionally, assume that p2 < 0, which resembles
the typical case in that the intensity of the B0 field is greater in the center of a magnet. Linear and constant terms can be
ignored without loss of generality, because the first is equivalent to a change in G0 and is easily corrected [26], whereas the
second can be corrected by an appropriate modulation of the MR signal. Then the trajectory in ρ–α space is

α(t) = cot−1(−2p2t) = cot−1(2|p2|t),

ρ(t) = k(t) sinα(t) =


0 t < 0,
G0t sinα(t) t ≥ 0.

Note that

G0t sinα(t) =
G0

2|p2|
cotα(t) sinα(t) =

G0

2|p2|
cosα(t).

Consequently, the ρ–α trajectory is a circumference centered at (G0/4|p2|, 0). Fig. 1(A) shows this trajectory starting in
t = 0 at the origin and asymptotically approaching the object axis as t grows.

For small values of t , the trajectory departs little from the frequency axis, and therefore distortions due to field variations
are small. This is consistent with the general knowledge that short readouts are less sensitive to inhomogeneity. Moreover,
as p2 tends to zero the field inhomogeneity vanishes and the center of the circumference located atG0/4|p2| tends to infinity.
Consequently, the ρ–α trajectory becomes a straight line in the frequency direction:

α(t) ≡
π

2
,

ρ(t) =


0 t < 0,
G0t t ≥ 0.

3.2. Standard 2DFT readout

Another commonly used trajectory assumes that k(t) linearly decreases until a given time t0 is reached and then linearly
increases passing through the origin, a standard procedure in 2DFT readouts [25]. Concretely,
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k(t) =

0 t < 0,
−G0t 0 ≤ t < t0,
G0(t − 2t0) t0 ≤ t,

where G0 is a constant representing the magnitude of the readout gradient and t0 is the instant where its sign is changed.
Assuming once more that the inhomogeneity is p(u) = p2u2 with p2 < 0, the trajectory in ρ–α space is given by

α(t) = cot−1(−2p2t),

ρ(t) =
1

1 + 4p22t2
×

0 t < 0,
−G0t 0 ≤ t < t0,
G0(t − 2t0) t0 ≤ t.

It is not difficult to see that

ρ(t) =

0 t < 0,
−G0t sinα(t) 0 ≤ t < t0,
G0(t − 2t0) sinα(t) t0 ≤ t.

=


0 t < 0,

−
G0

2|p2|
cosα(t) 0 ≤ t < t0,

G0

2|p2|
(cosα(t)− 2 cotα0 sinα(t)) t0 ≤ t,

where α0 = α(t0). This trajectory is formed by two pieces of circumferences, one for the negative frequencies centered at
(−G0/4|p2|, 0)which continues with another one centered at (G0/4|p2|,−G0t0), as shown in Fig. 1(B).

To summarize these analysis, note that in the homogeneous field case, the measurements on the magnetization of the
object are always performed in the Fourier domain. In contrast, the ρ–α space analysis shows that quadratic fields induce
a time evolution on the domain where the measurements are performed. This evolution can be studied through the time
evolution of the transform order a. This remarkable connection shows that not only the FrFT allows us to handle MRI with
quadratic fields, but also induces a physical interpretation to the transform order a.

4. Reconstruction from samples acquired in fractional domains

In the previous sections, we described how the fractional Fourier transform lends itself to the study of the signal equation
that results when quadratic fields are being considered. In this section, we deal with the problem of reconstructing the
magnetization of the object from this measured data. Notice that in the presence of quadratic field inhomogeneities, the
measured data will not correspond to a specific frequency k as in the undistorted Fourier case, but to a fractional frequency
uwith transform order a. Formally, this problem can be described as follows. Let f ∈ L2(R) be the underlyingmagnetization.
LetM be a fixed positive integer. Our problem is to find an approximation f̃ ∈ L2(R) from the samples:

Sam(ρm) = F am(f )(ρm),

where {(ρm, am)}Mm=−M is a sequence of fractional frequencies ρ associated to their transform orders am. In this section, we
will use the theoretical framework introduced in Section 2 to propose a new method to solve this problem. We begin with
the following result.

Theorem 4.1. For all f ∈ L2(R) and a ∈ R fixed, we have

f =

∞−
n=0

⟨F a(f ), ψn⟩ ein
π
2 aψn, (4.1)

where the equality is to be understood in the L2-norm.

For a proof, see the Appendix. It is clear from (4.1) that the discrete sequence of samples {Sam(ρm)}Mm=−M does not provide
enough information to reconstruct a function f using the inverse FrFT. As a result, the reconstruction is not unique and it is
in fact an interpolation problem. The standard approach is to consider that the measured data is enough to approximate the
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inner products in (4.1) as

⟨F a(f ), ψn⟩ ≈

M−
m=−M

Sam(ρm)ψn(ρm)1ρm, n ∈ N0, (4.2)

where we have replaced the fractional frequencies ρ and transform order a by the values of the sequence {Sam(ρm)}Mm=−M
and added 1ρm as a suitable finite approximation for the differential dρ. Concretely, we approximate the integrals in the
inner products by means of Riemann sums. This technique is commonly referenced as ‘‘assuming that the unmeasured
data is equal to zero’’. However, this statement has no formal interpretation in our framework. This is because (4.1) is to
be understood in the L2(R) sense and consequently there is no consistent way to interpret the point-value of a function.
Nevertheless, (4.2) is to be understood as a definition of the approximation of the inner products using Riemann sums,
allowing us to overcome this conceptual problem. For simplicity, in what follows we will assume that ∆ρm ≡ 1 for the
relevant values ofm.

In what follows, we denote (cf. Lemma 2.4)

Kαρ (u) :=
√
1 − i cotα eiπ(ρ

2 cotα−2ρu cscα+u2 cotα). (4.3)

From Theorem 4.1, we deduce the following reconstruction formula

f (u) ≈ f̃ (u) =

M−
m=−M

Sam(ρm)K
−
π
2 am

ρm (u). (4.4)

In fact, putting (4.2) in (4.1) we obtain

f (u) ≈

∞−
n=0


M−

m=−M

Sam(ρm)ψk(ρm)


ein

π
2 amψn(u)

=

M−
m=−M

Sam(um)


∞−
n=0

ψn(ρm) ein
π
2 amψn(u)


,

and hence (4.4) follows from Lemma 2.4.
Clearly, the reconstruction f̃ given in (4.4) is not identical to the true image f . Note that

f̃ (u) =

M−
m=−M

Sam(ρm)

1 + i cotαm e−iπ(ρ2m cotαm−2ρmu cscαm+u2 cotαm), (4.5)

where αm =
π
2 am. It is remarkable that the above formula coincides with the approach to the discrete fractional Fourier

transform given by Ozaktas et al. [3, p. 218–219]. On the other hand, it corresponds to a direct extension of the windowed
Fourier reconstruction method in MRI (see [25, p. 195]) which is recovered in the case αm = π/2. In fact, in this case we
have ρm = km and am ≡ 1 so that

f (u) ≈ f̃ (u) =

M−
m=−M

S(km) e2π ikmu, (4.6)

where we denote S(km) ≡ S1(km).
The remarkable point now is that, using approximation formulas for semigroups, we can obtain other reconstruction

methods. Among all possible approximation formulas arising from this theory, we use as an example that of Theorem 2.7,
to deduce the following result.

Theorem 4.2. For all f ∈ L2(R) and any a ∈ R we have,

f = lim
q→∞

eaq
∞−

n,m=0

(−aq)n

n!
e−i nqm⟨F af , ψm⟩ ψm,

where the equality is understood in the L2-norm.

For a proof, see Appendix. From Theorem 4.2 we deduce the following reconstruction formula

f̃ (u) = lim
q→∞

eamq
M−

m=−M

∞−
n=0

(−amq)n

n!
Sam(ρm)K

n
q
ρm(u).
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A B C

Fig. 2. Comparison between the original function (dotted line), its standard Fourier transform reconstruction (solid gray line) and the fractional Fourier
transform reconstruction (solid black line). Fig. 2(A)–(C) show the cases when the data was acquired on fractional domains corresponding to transform
orders a equal to 2/3, 1/2 and 1/3.

Observe that in the particular Fourier case am = 1 and ρm = km, we obtain a new reconstruction formula only in terms
of the Fourier transform samples:

f̃ (u) = lim
q→∞

eq
M−

m=−M

∞−
n=0

(−q)n

n!
S(km)K

n
q
km(u), (4.7)

which in the customary form reads:

f̃ (u) = lim
q→∞

eq
M−

m=−M

∞−
n=0

(−q)n

n!
S(km) e

−iπ(k2m cot( nq )−2kmu csc( nq )+u2 cot( nq )).

To implement the reconstruction formula defined in Theorem 4.2, we must consider a finite value for q. In this case, the
approximation has two interesting features. First, in windowed Fourier reconstructions the samples are multiplied by a set
of scalars to suppress the high-frequency content in the reconstruction. This set of scalars is normally chosen manually. In
the proposed approximation these coefficients arise naturally and are independent of the number of samples, sampling
frequency or the frequency content of the original signal. Second, in windowed Fourier reconstruction the samples are
multiplied by a set of scalars, whereas in our method the exponentials are multiplied by a set of scalars. It is also interesting
to note that exponentials corresponding to different transform orders are mixed to produce a suitable reconstruction
that, by virtue of Theorem 4.2, converges to the original signal. This suggests that the approximation formulas arising in
strongly continuous group theory allow us to explore new frameworks for FrFT reconstructions and windowed Fourier
reconstructions.

5. Numerical experiments

In this section, we will show some numerical experiments that represent a generic MR reconstruction. Concretely, we
will consider a 1D object of 5 cmwith a constantmagnetization equal to 1 centered at the origin. A FOV (Field of View, i.e., the
size of the interval over which the signal will be reconstructed) of 10 cm and 257 samples will be acquired, i.e., M = 128.
In a standard MRI application, this means that the acquisition step is 1ρm = 5 × 10−2 and ρM = 6.4. The measurements
were performed at transform orders a equal to 1, 2/3, 1/2 and 1/3. In each case, the magnetization was reconstructed using
the standard Fourier reconstruction and the FrFT reconstruction. The comparison between the reconstructions using the
FrFT (4.5) and the standard Fourier reconstruction (4.6) can be seen in Fig. 2 for a equal to 2/3, 1/2 and 1/3. Note that, as
expected, the FrFT reconstruction recovers very well the original signal, whereas the standard Fourier reconstruction fails.
Note also that as a decreases, the standard Fourier reconstruction becomes increasingly inaccurate. On the other hand, the
FrFT reconstruction slightly improves its accuracy as a decreases.

To study the advantages of the reconstruction method proposed in Theorem 4.2, we restate first the reconstruction
formula as

f̃ (u) = lim
q→∞

M−
m=−M

∞−
n=0

qn

n!
e−qSam(ρm)K

−
n
q am

ρm (u). (5.1)

This formula involves an infinite series and a limit. However, the weighting factors, which correspond to the coefficients
of the exponential series, decay rapidly to zero and thus only a fraction of the coefficients in the series contribute in a
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A B

D E F

C

Fig. 3. Comparison between the original function (dotted line), its standard FrFT reconstruction (solid gray line) and the proposed approximation formula
(solid black line). Fig. 3(A)–(C) show both reconstructions and the original function for q equal to 250, 2500 and 25,000, respectively. Fig. 3(D)–(F) show
the details of the above plots near the discontinuity of the original signal, showing how the value of q controls the smoothness of the reconstruction.

significant way to the reconstruction. The drawback is that these weights involve factorials which become increasingly
difficult to accurately calculate as n increases. To overcome these difficulties, we begin by approximating these factors by a
Gaussian function. We use the following lemma.

Lemma 5.1. For sufficiently large q, we have:

qn

n!
e−q

≈
1

√
2πq

e−
1
2
(n−q)2

q . (5.2)

For a proof, see Appendix. The proposed approximation becomes more accurate as q increases, which is exactly the kind
of behavior in which we are interested. Also, the approximation allows us to estimate the error produced in truncating the
series by means of the standard deviation of said approximation, which in turn depends on the value of q. Define

cq(n) =
1

√
2πq

e−
1
2
(n−q)2

q . (5.3)

Since the summation index is independent of the samples Sα(ρm), we can interchange the sums in (5.1). Define the functions

φαq (ρ, u) =

∞−
n=0

cq(n)K
−

n
q α

ρ (u). (5.4)

Using this notation, we can construct a one-parameter family of reconstructions for f given by

f̃q(u) =

M−
m=−M

Sαm(ρm)φ−αm
q (ρm, u). (5.5)

The reconstruction defined in (5.1) can be thought as a suitable smoothing of the set of kernels K a
ρ(u). This contrasts with the

standard approach of smoothing the data, i.e., multiplying the samples Sam(ρm) by a suitable set of scalars to obtain better
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reconstructions. To show the benefits of the proposed approximation formula, we are going to show the results for a = 1
and for q equal to 250, 2500 and 25,000. In this case, we are using essentially (4.6) and (4.7) to obtain the reconstructions.
The results can be seen in Fig. 3. The parameter q controls the smoothness of the reconstruction. For low values of q, the
approximation f̃q is smooth and consequently does not reconstruct the discontinuities well enough. As q increases, the
discontinuities become more evident, as does the Gibbs phenomenon.

6. Discussion

In thiswork, we formulated the fractional Fourier transform (FrFT)within the context of strongly continuous semigroups.
As stated in the introduction, the FrFT constitutes a one-parameter family of operators that continuously produce
interpolations between the identity operator I and the Fourier transformF . The proposed framework shows that this family
of operators is also endowed with a functional analytic structure, namely that of a strongly continuous semigroup. As a
consequence of the uniqueness of the solution to the associated abstract Cauchy problem of first order, interpolations that
share the same algebraic structure are equal, up to renormalization, to the FrFT. Additionally, the proposed framework
suggests a different interpretation to the operator F a as a function of the transform order a. Traditionally, in the signal
processing literature the transform order has been thought as a fixed quantity. The proposed framework gives a dynamic
interpretation of the order, as it can represent time evolution of a function. Also, this framework allows us to exploit
approximation results from this theory to propose new methods for reconstruction problems.

Our work also shows the natural connection between the FrFT and Magnetic Resonance Imaging (MRI) done with
quadratic fields. Not only the FrFT appears naturally in this context, but it also endows the transform order awith a natural
physical interpretationwhich is consistentwith the one suggested by the semigroup framework. Concretely, quadratic fields
induce the time evolution of the domain where the measurements on the magnetization of the object are being performed,
from the Fourier domain to fractional domains. This contrasts with MRI performed with homogeneous fields, where the
measurements are always performed on the Fourier domain.
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Appendix

Proof of Proposition 2.1. Let f ∈ L2(R). Since clearly ψn ∈ L2(R) it follows that Pnf ∈ L2(R) and we have Pm(Pnf ) =

⟨Pnf , ψm⟩ ψm = ⟨f , ψn⟩ ⟨ψn, ψm⟩ ψm. Hence, assertion (i) follows from the orthogonality of the set {ψn}
∞

n=0. Using the
Cauchy–Schwarz inequality, we deduce ‖Pnf ‖2

= |⟨f , ψn⟩ |‖ψn‖
2

≤ ‖f ‖2
‖ψn‖

2
= ‖f ‖2, which implies assertion (ii). To

prove assertion (iii), we use the identity [3, Table 2.8 p. 41]

ψ ′′

n (u)+ 4π2

2n + 1
2π

− u2

ψn(u) = 0,

which is equivalent to

−in
π

2
ψn(u) =

i
2


1
4
ψ ′′

n (u)− π2u2ψn(u)+
π

2
ψn(u)


= Hψn(u).

Hence

PnH f = ψn⟨H f , ψn⟩ = ψn⟨f ,−Hψn⟩ = ψn


f , in

π

2
ψn


= −in

π

2
Pnf ,

and

HPnf = ⟨f , ψn⟩ Hψn = −in
π

2
Pnf .

Assertion (iv) follows directly from the fact that {ψn}
∞

n=0 is a complete orthogonal system in the Hilbert space L2(R). Finally,
assertion (v) follows from classical results in semigroup theory (see e.g. [27, Chapter 1, Section 4 and Chapter II, Theorem
1.4]). �
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Proof of Theorem 2.2. We first prove that for all f ∈ L2(R)we have T (t)f ∈ L2(R). In fact, for f ∈ L2(R)we have

‖T (t)f ‖2
=


∞−
n=0

e−in π2 tPnf ,
∞−

m=0

e−im π
2 tPmf



=

∞−
n=0

∞−
m=0

e−i(n−m) π2 t
⟨PmPnf , f ⟩

=

∞−
n=0

⟨Pnf , f ⟩ =

∞−
n=0

|⟨ψn, f ⟩ |
2

= ‖f ‖2. (A.1)

The above identity implies the claim and that

‖T (t)‖ ≤ 1, (A.2)

for all t ∈ R. From Proposition 2.1 (i) and (iv) we deduce the group property T (t + s) = T (t)T (s) and T (0) = I . In fact, we
have

T (t)T (s)f =

∞−
n=0

∞−
m=0

e−in π2 t e−im π
2 sPnPmf

=

∞−
n=0

e−in π2 (t+s)Pnf = T (t + s)f . (A.3)

Finally, we claim that T (t)f → f as t → 0 which shows that T (t) is strongly continuous. In fact, since the domain of H is
dense in L2(R), it is sufficient to prove the claim for f ∈ D(H). Let g = H f . We have by Proposition 2.1 (iv) and (ii)

‖T (t)f − f ‖2
=

 ∞−
n=0

( e−in π2 t
− 1)Pnf


2

=

2iπ
∞−
n=1

( e−in π2 t
− 1)

1
n
Png


2

=
4
π2

∞−
n=1

| e−in π2 t
− 1|2

1
n2

‖Png‖2

≤
4
π2

∞−
n=1


2
n2

− 2
cos(nπ t/2)

n2


‖g‖2

=
4
π2


π2t
2

−
π2t2

8


‖g‖2, (A.4)

where in the last equality we have used the identity
∞−
k=1

cos ku
k2

=
π2

6
−
πu
2

+
u2

4
,

valid for u ∈ [0, 2π ] (see [28, Formula 1.443(3)]). This proves the claim. Finally, it is clear from the definition that T (t) has
period 4. That T (1) is the Fourier transform of f follows from their representation in terms of the Gauss–Hermite functions
(see e.g. [3]). �
Proof of Lemma 2.4. All the integrals in the proof are to be taken over R. We will need the following two identities:

e2us−s2
=

∞−
n=0

Hn(u)
sn

n!
, (A.5)

e−u2
=

1
√
π

∫
e2isu−s2ds. (A.6)

The first one corresponds to the exponential generating function of the Hermite polynomials [28, Formula 8.957(1)], which
is valid for u, s ∈ C, whereas the second corresponds to the Gaussian integral [28, Formulas 9.241(1) and 9.251], which is
valid for u ∈ C. Using the Rodrigues formula for the Hermite polynomials (cf. (2.2)) we obtain

Hn(u) =
(−2i)n
√
π

eu
2
∫

sn e2ius−s2ds.
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Hence, by the definition of ψn we have
∞−
n=0

ψn(ρ) e−inαψn(u) =

∞−
n=0

e−inαψn(u)
21/4

√
2nn!

Hn(
√
2πρ) e−πρ2

= 21/4 e−πρ2
∞−
n=0

e−inαψn(u)
1

√
2nn!

Hn(
√
2πρ)

= 21/4 e−πρ2
∞−
n=0

e−inαψn(u)
1

√
2nn!

(−2i)n
√
π

e2πρ
2
∫

sn e2i
√
2πρs−s2ds

= 21/4 e−πρ2
∞−
n=0

e−inα 21/4

√
2nn!

Hn(
√
2πu) e−πu2 (−2i)n

√
π

√
2nn!

e2πρ
2
∫

sn e2i
√
2πρs−s2ds

= 21/2 eπρ
2
e−πu2 1

√
π

∞−
n=0

e−inα (−i)n

n!
Hn(

√
2πu)

∫
sn e2i

√
2πρs−s2ds

= eπρ
2
e−πu2


2
π

∫ 
∞−
n=0

(−is e−iα)n

n!
Hn(

√
2πu)


e2i

√
2πρs−s2ds.

We must verify the summation under the integral sign in the last step. Observe that the sum S :=
∑

∞

n=0
(−ise−iα)n 1

n!Hn(
√
2πx) occurring here is like that in (A.5). The series in (A.5) is the product of the Taylor series of e2xz and

e−z2 , as functions of z. Its coefficients Hn(x) are clearly dominated by those of the product of the expansions of e2|x||z| and
e|z|2 . Thus, any partial sum of the series in (A.5) is dominated by e2|x||z|e|z|2 . If this is applied to S, we bound the partial sums
of S by an integrable function. This justifies the exchange between the sum and the integral. Combining now with (A.5) we
obtain

∞−
n=0

ψn(ρ) e−inαψn(u) = eπρ
2
e−πu2


2
π

∫ 
∞−
n=0

(−is e−iα)n

n!
Hn(

√
2πu)


e2i

√
2πρs−s2ds

= eπ(ρ
2
−u2)


2
π

∫
e2

√
2πu(−is e−iα)−(−is e−iα)2 e2i

√
2πρs−s2ds

= eπ(ρ
2
−u2)


2
π

∫
e−2i

√
2πus e−iα

+s2 e−i2α
e2i

√
2πρs−s2ds

= eπ(ρ
2
−u2)


2
π

∫
e−s2(1− e−i2α) e2i

√
2πs(ρ−u e−iα)ds.

Using the change of variables τ = s
√
1 − e−i2α on the last integral:

∞−
n=0

ψn(ρ) e−inαψn(u) = eπ(ρ
2
−u2)


2

π(1 − e−i2α)

∫
e−τ2 e

2i
√
2π (ρ−u e−iα)τ

√
1− e−i2α dτ .

Comparing with (A.6) we have
∞−
n=0

ψn(ρ) e−inαψn(u) = eπ(ρ
2
−u2)


2

1 − e−i2α
e
−2π (ρ−u e−iα)2

1− e−i2α

= eπ(ρ
2
−u2)


eiα

i sinα
e−

π eiα
i sinα (ρ−u e−iα)2

=
√
1 − i cotα e−2π i


−

1
2 ρ

2 cotα+ρu cscα−
1
2 u

2 cotα

,

proving the lemma. �
Proof of Theorem 2.6. To prove assertion (i), let A be the infinitesimal generator of T (t). Then, by the definition of A, T (t)
and Proposition 2.1(iii) we have

Aψm = T ′(t)|t=0ψm =

∞−
n=0

−in
π

2
Pnψm =

∞−
n=0

HPnψm = Hψm,

which shows that A = H . Since H∗
= −H , i.e., H is skew-adjoint, assertion (ii) follows from [27, Chapter 1, Section 3.5].

The remaining assertions are consequences of the periodicity of T (t) (see [27, Chapter IV, Section 2(c)]). �
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Proof of Theorem 2.7. Since {T (t)}t∈R constitutes a strongly continuous semigroup with ‖T (t)‖ ≤ 1, from [27, p. 216] we
have:

T (t)f = lim
q→∞

e−tq etqT (1/q)f , t ≥ 0,

and hence the result follows from the expansion in the Taylor series of the exponential function, and the group property. �

Proof of Theorem 3.1. Consider α(t) and ρ(t) as defined by (3.5) and (3.6). If we use the branch of cot−1 such that α(t)
∈ [0, π], then cscα(t) > 0 for all values of t and consequently we can write

−2p2t = cotα(t),
−2(k(t)+ p1t) = −2ρ(t) cscα(t).

By replacing these expressions in (3.2) we have

s(t) = e−i2πp0t
∫

∞

−∞

f (u) eiπ(u
2 cotα−2ρu cscα)du, (A.7)

where we have dropped the dependence of the variable t for simplicity. Using (3.3) and (3.4) on (A.7) yields the relation

s(t) = e−i2πp0tCα(ρ)−1F α(f )(ρ),

or:

F α(t)(f )(ρ(t)) = ei2πp0tCα(t)(ρ(t))s(t),

proving the theorem. �

Proof of Theorem 4.1. Let a ∈ R be given. For all g ∈ L2(R)we have by Proposition 2.1

g =

∞−
n=0

Png =

∞−
n=0

⟨g, ψn⟩ ψn.

Setting g = F a(f )we obtain

F a(f ) =

∞−
n=0

⟨F a(f ), ψn⟩ ψn.

Using the fact that F a
≡ T (a) ∈ B(L2(R)), we get

f =

∞−
n=0

⟨F a(f ), ψn⟩ F −a(ψn).

Since Pnψm = ψn if n = m and 0 otherwise, we deduce that F −a(ψn) = ein
π
2 aψn, and hence

f =

∞−
n=0

⟨F a(f ), ψn⟩ ein
π
2 aψn. � (A.8)

Proof of Theorem 4.2. Let a ∈ R be given. Using the semigroup notation, define g := T (a)f ∈ L2(R). From Theorem 2.7
and Definition 2.3 we have

T (−a)g = lim
q→∞

eaq
∞−
n=0

(−aq)n

n!
T

n
q


g.

Remark that

T

n
q


g =

∞−
m=0

e−i nqmPmg =

∞−
m=0

e−i nqm⟨g, ψm⟩ ψm.

Hence

f = T (−a)g = lim
q→∞

eaq
∞−

n,m=0

(−aq)n

n!
e−i nqm⟨g, ψm⟩ ψm

= lim
q→∞

eaq
∞−

n,m=0

(−aq)n

n!
e−i nqm⟨T (a)f , ψm⟩ ψm.

Replacing T (a)f = F a(f )we obtain the desired result.
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Proof of Lemma 5.1. This approximation is an application of the central limit theorem to a Poisson distributed random
variable. Let λ ∈ R+

0 and let {Xn}n∈N0 be a sequence of independent and identically distributed Poisson random variables
with parameter λ. Note that E{Xn} ≡ λ and V{Xn} ≡ λ. Let N ∈ N0. Define

SN :=

N−
n=1

Xn.

The central limit theorem tells us that
SN − Nλ

√
Nλ

→ N (0, 1)

in distribution as N → ∞. Thus, for N sufficiently large

SN ∼ N (Nλ,
√
Nλ).

But the sum of independent Poisson random variables distributes as a Poisson random variable. In other words, SN ∼

Poisson(Nλ). Setting q = Nλ concludes the proof. Note that the Poisson distribution has finite thirdmoment. Consequently,
by the Berry–Esseen theorem [29, Section XVI.5], the convergence ratio is at least of the order of N−1/2. �
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